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ABSTRACT 

Let G and K be finite groups whose orders have a common prime divisor. 
Then there is a group K* closely related to K for which there is a non-split 
extension of K* by G. 

In [8] the problem of splitting of group extensions was considered from the 

following point of view: given a group K and a suitable class 3; of groups, under 

what circumstances do all extensions of K by 3;-groups split? In this note, we make 

some remarks about the dual question: given a group G and a class 3; of groups, 

when do all extensions ot ~ a;-groups by G split? We discuss only the case in which 

G is a finite group and ~ a class of finite groups. 

A first relevant fact is a result of W. Gaschiitz [~1]. If G is a finite group and 

p a prime divisor of the order I G I of G then there is a finite group H with a normal 

elementary abelian p-subgroup A # 1 such that H[A -~ G and A < r  the 

Frattini subgroup of H;  hence such that H does not split over A. Therefore, 

if 3E is any class of finite groups which contains all elementary abelian p-groups 

for all primes p which divide the orders of X-groups, then a necessary (and of 

course, by the Schur-Zassenhaus theorem, sufficient) condition for all extensions 

of ~-groups by G to split is that all X-groups have orders co-prime to I G I" We 

shall prove the following sharper non-splitting result: 

THEOREM 1. Let G and g be finite groups such that (JGI, IK])  > 1. Then 

there is a non-split extension of a group K* by G, where K* is a subgroup of 

* I wish to express thanks to the Mathematics Institute of the Hebrew University of 
Jerusalem for its hospitality from September to December 1972, and to Dr. Avinoam Mann 
for his helpful comments. 

Received February 26, 1973 

375 



376 JOHN S. ROSE Israel J. Math., 

a finite direct product of copies of K ,  and K is an epimorphic image of K* .  

In particular, for every prime p,  the Sylow p-subgroups of K and K* have the 

same class, derived length and exponent; and if  K is soluble, K and K* have 

the same derived length, nilpotent length and p-length for all primes p.  

On the other hand, we cannot in general choose K* in Theorem 1 to be a direct 

product of copies of K ,  in view of the following simple fact. 

THEOREM 2. The class of finite groups all extensions of which split is closed 

under the formation of finite direct products. 

This class certainly contains non-trivial groups since it contains for instance 

all complete finite groups; it also contains groups which are not complete: see [8]. 

In order to prove Theorem 1, we need a straightforward generalization of a 

fundamental result of Gaschiitz I-1]. Before stating this, we introduce some no- 

tation and terminology. We use P. Hall's convenient notion of closure operations 

on classes of groups: see [4, w Thus a classXof groups is said to be s-closed 

if every subgroup of an X-group is an X-group, D0-closed if the direct product 

of any 2 .~-groups is an ~-group, and Ro-closed if any subdirect product 

of 2 ~-groups is an ~-group. If  t is a positive integer, a group K is said to be a 

t-generator group if K has a generating set of elements with at most t members. 

We shall call a class ~ of finite groups bounded if, for every positive integer t ,  

there is a corresponding positive integer X(t) such that all t-generator X-groups 

have orders < X(t) .  

The generalization of Gaschiitz's result which we shall use is 

THEOREM 3. Let n be a positive integer, G a finite n-generator group and 

�9 . a bounded Ro-Closed class of finite groups. Let c~ be the class of all group ex- 

tensions 1 ---> K 2_, H --* G -~ 1 (where t denotes the inclusion map) such that 

K is an X.-group and H an n-generator group. Then there is in c# an extension 

1 -~ K* -~ H* ~ G --> 1 which is universal for c~ in the following sense. For 

any extension 1 -~ K -~ H -~ G -~ 1 in c# there is an epimorphism X: H* -~ H 

such that the diagram below is commutative. 

K ~H I! 
Fig. 1 



Vol. 15, 1 9 7 3  UNIVERSAL FINITE GROUP EXTENSIONS 377 

In this connexion, see the remarks at the beginning of Chap. 9 of K. W. Gruen- 

berg's book [3]. 

REMARK. In the diagram above, since Z is an epimorphism, Z maps K* onto K. 

In order to prove Theorem 3 we first prove 

]_.EMMA 1. Let n be a positive integer and F a free group of rank n. Let G 

and H be n-generator groups for which there is an epimorphism ~: H ~ G 

such that Ker ( is finite. Then, for any epimorphism O: F ~ G, there is an 

epimorphism q: F ~ H such that 

0 = rl~. 

The appropriate diagram is 

O 
F ~,G , /  

H 
Fig. 2 

PROOF. Let {x 1, ..., x,} be a set of free generators of F and let 

xjO = gj for j = 1 , . . . ,n .  

Then 

G = ( g ~ , . - . , g , ) .  

Since Ker~ is finite and H is an n-generator group, it follows from a result of 

Gaschfitz ([2, Satz 1]) that there is a set {hi, ---, h,} of generators of n such that 

h j ~ = g j  for j =  1 , . . . ,n .  

Now there is a (unique) homomorphism 17: F ~ H such that 

x / / = h j  for j =  1 , . . . ,n .  

Since H = ( h l ,  "", h,)  and F = (xl ,  . . . , x , ) ,  it follows that r/is an epimorphism 

and 

n~ = 0 .  

PROOF Or THEOREM 3. Let F be a free group of rank n and let 
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I ~ R ~ F O  G ~ I  

be a presentation of G. By Schreier's theorem, R is finitely generated. Therefore, 

since X is a bounded class, the quotient groups of R which are X-groups have 

bounded orders. We choose a normal subgroup Tof R such that R/Tis an X-group 

of maximal order. Then, since X is Ro-closed, T is in fact the unique smallest 

normal subgroup of R with an X-group as quotient. Hence T is normal in F.  

Let 0 be the homomorphism of FIT onto G induced by 0. Then 

I ~ RIT ~ F/T ~ G ~ I 

is an extension in the class cg. We claim that it is universal for c~ in the sense 

defined. 

Let 

I ~ K ~ H ~ G ' - ~ I  

be any extension in ~ .  Since G and/- /are  n-generator groups and Ker ~ = K, 

which is finite, we can apply Lemma 1. This guarantees the existence of a presen- 

tation of 11, say 

I ~ S-~ F ~ H-~ I 

such that 

Then 

0 = r f f .  

S = K e r r / < K e r 0 = R .  

Moreover, r/induces an isomorphism of F/S onto H in which R/S is mapped 

to Ker ( = K.  Therefore R/S is an X-group, and so 

T < S .  

Hence ~/induces an epimorphism 4: FIT ~ H such that 

r/~ = 0 .  

Moreover, F/maps R/T to K.  Hence we have a commutative diagram 

Fig. 3 
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as required. 

As particular choices for ~ in Theorem 3 we may take 

(i) for any positive integers m and s, 3~ -- the class of  finite soluble groups 

of exponents dividing m and derived lengths _< s; 

(ii) for any prime p,  ~ -- the class of finite groups of exponent p (and 1): 

this by a famous theorem of A. I. Kostrikin [6]. 

Gaschiitz's original result ([1, Satz 1]) corresponds to choosing m = p,  a 

prime, and s = 1 in (i). Now in order to prove Theorem 1 we shall show that 

another possible choice for ~ in Theorem 3 is 

(iii) for any finite group K, ~ = the smallest {S, Do}-closed class of groups 

containing K .  

Since a class of groups which is {S, Do)-closed is certainly Ro-closed, what 

we have to show is that the smallest (S, Do}-closed class of groups containing 

any finite group K is a bounded class. This is the content of Lemma 2. 

LEMMA 2. Let K be a finite group. Then the class of all subgroups of finite 

direct products of copies of K is a bounded class of groups. 

This follows from Theorem 15.71 of H. Neumann's  book [7]. A direct proof 

is included here. 

PROOF. We show that for every positive integer t ,  every t-generator subgroup H 

�9 I '  ofaf imted l rec tproduc tofcoplesofKhasorder  K Irl .  Let H < K1 • "'" • K,, 

where n is a positive integer and each K~ is a copy of K(j  = 1,..., n). We argue 

by induction on n. The assertion is trivial for n = 1, so we suppose that n > 1. 

By the induction hypothesis we may assume that H is not isomorphic to a sub- 

group of a direct product of n - 1 copies of K .  Let F be a free group of rank t 

and let 

I~R~FOH-~I 
be a presentation o f H .  F o r j  = 1, ..., n let nj be the projection homomorphism 

of K~ x ... x Kn onto K which maps each element of K,  x ... x K,  onto its 

j th  component; and let t denote the inclusion map of H in K1 x ... x K , .  Then 

0tgl,. . . ,0trc n are homomorphisms of F into K.  Now if 0trc, = 0trc~ with 

1 N r < s < n then, since 0 maps F onto H, every element of H would have 

its rth and sth components equal; but then H would be isomorphic to a subgroup 

of a direct product of n - 1 copies of K ,  contrary to assumption. Therefore 

Otrq, ..., Otn, are distinct homomorphisms of F into K .  But since each homo- 
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morphism of F into K is determined by its effect on a set of t free generators 

of F ,  there are just I K I t distinct homomorphisms of F into K.  Hence n < I gl' 
and so 

In I __< IKIn=< Igll l' 
This completes the induction proof. 

We use also 

LEMMA 3. Let ~ be any bounded, {S, Do}-closed class of finite groups. Let 

n be a positive integer, G a finite n-generator group and c~ the class of extensions 

defined in Theorem 3. Let 1 ~ K* ~ H* ~ G ~ 1 be an extension in ~ which 

is universal for c~. Then H* splits over K* if  and only if all X-groups have 

orders co-prime to !GI. 
PROOF. If (1G 1, I K* 1) = 1 then H* splits over K*,  by the Schur-Zassenhaus 

theorem. 

Now suppose that there is an 3~-group J such that (I G l, I J l) > 1. Let p be a 

common prime divisor of Ial and I JI Since 3~ is {S, Oo}-closed, X contains all 

finite elementary abelian p-groups. By a result of GaschiJtz [1] mentioned above, 

there is an extension 
I ~ A ~  H - - . G ~  I ,  

where A is an elementary abelian p-group and 1 < A < *(/-/). It follows from 

this, since G is n-generator, that H is n-generator, and therefore that the extension 

belongs to ~ .  Hence there is an epimorphism Z: H* ~ H making a commutative 

diagram. 

~H 

Fig. 4 

Then, since Kerz  < K*, if H* were to split over K* it would follow that 

H split over A, which is false. Hence H* does not split over K* 

PROOF OF THEOREM 1. We suppose that G and K are finite groups such that 

(I G l, [K l) > 1. Let X be the class of all subgroups of finite direct products of 

copies of K; thus X is the smallest {S, Oo}-closed class of groups containing K.  

By Lemma 2, 3~ is a bounded class. Since also X is Ro-closed, Theorem 3 is appli- 
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cable. Let n be a positive integer such that the direct product G x K is an n-gene- 

rator group and let ~ be the class of extensions defined in Theorem 3, with 

as above. Let 

I ~ K* ~ H* ~ G ~  I 

be an extension in c~ which is universal for c~. There is also in cg an extension 

I ~ K ~ G x K ~ G ~ I .  

Hence there is a commutative diagram 

K ~-H ,(! 
b6xH 
Fig. 5 

in which K* is mapped onto K .  Thus K is an epimorphic image of K*,  which 

is a subgroup of a finite direct product of copies of K .  Moreover, 

I ~ K* ~ H* ~ G ~  I 

is an extension of  K* by G which, by Lemma 3, does not split. 

To prove Theorem 2, we note first 

LEMMA 4. Le t  n be a positive integer and let L1, ..., L n be normal subgroups 

of, respectively, groups K1, . . . ,K  n. Then the direct product K 1 • ... x K n splits 

over L 1 • ... x L,  i f  and only i f  each K j  splits over L j ,  for  j = 1, ..., n.  

PROOF. L e t K = K l  x . . .  •  a n d L  = L 1 •  x L, .  If  J j  is a complement 

to Lj in Kj for j = 1,.-., n then clearly J l  x ... x J ,  is a complement to L in  K .  

Conversely, if J is a complement to L in K then, for j = 1,... ,  n,  (JL j) ~ K s is 

a complement to Lj in K j ,  where L j is the product of all the Li's except Lj .  

LEMMA 5. Let K be a group with a normal subgroup L, and let n be a 

positive integer. Let W denote the natural wreath product of K by ~ ,  the sym- 

metric group of degree n, let K1 x ... x K ,  denote the base group of W(a  direct 

product of n copies of K)  and let L 1 x ... x L n denote the corresponding direct 

product of n copies of L, which is a normal subgroup of W. Then W splits over 

L 1 x ... x L,  i f  and only i f  K splits over L. 
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PROOF. If  W splits over L l x . . . x L ,  then K~ x ... x K ,  splits over 

L1 x ... x L, ,  and so, by Lemma 4, K splits over L. 

Conversely, suppose that K splits over L, and let J be a complement to Lin K.  

Let J1 x ... x J ,  denote the corresponding direct product of n copies of J which 

is a subgroup of Wnormalized by ]E,. Now it is clear that (J~ x ... x J,) ]~, is 

a subgroup of W which is a complement to L 1 x ... x L, in W. 

Now let 0 denote the class of finite groups all extensions of which split. A 

finite group K is a 0-group if and only if Z(K) = 1 and Aut K splits over Inn K: 

see [8, Corollary 2.3]. 

LEMMA 6. Let K be any non-trivial O-group. Then any indecomposable 

direct factor of K is also a O-group. 

PROOF. SayK = KI~ x ... x KI ,  , x K21 x ... x K2, 2 x ... x Ks1 x ... x Ks," 

where s, r 1, r2, "", r, are positive integers, each Kij is a directly indecomposable 

group and K o ~ Ki,j, if and only if i = i ' ,  for 1 < i, i' =< s, 1 < j < r , ,  

1 ___< j '  < r~,. Since by hypothesis Z(K) = 1, it follows that Z(Kq) = 1 for all 

i,j. Also, by the Krull-Remak-Schmidt theorem ([5, 1.12.6]) the decomposition 

of K above is the unique decomposition of K as a direct product of indecompo- 

sable factors. Hence, for i = 1, ...,s, K,1 x ... x K~r, is a characteristic subgroup 

of K;  and 

A u t K - ~  W l x  W 2 x ' " x  Ws, 

where, for i = 1, ...,s, W~ is the natural wreath product of AutK,1 by ~r,. The 

normal subgroup of W1 x ... x W~ corresponding to Inn K is Y1 x ... x Y~, 

where, for i = 1, ..., s, Yi is the direct product of r i copies of Inn Kil naturally 

contained in the base group of W/. By hypothesis, Aut K splits over InniK. Hence, 

by Lemma 4, W~ splits over Yl, for i = 1, . . . ,s; then, also by Lemma 5, AutK~l 

splits over InnKi l .  Hence, for i = 1, . . . , s ,  Kil is a 0-group. This proves the 

lemma. 

PROOF OF THEOREM 2. We have to show that if K~ and K 2 are 0-groups 

then the direct product K~ x K2 is a 0-group. Each of K t and K2 can be ex- 

pressed (by the Krull-Remak-Schmidt theorem uniquely) as a direct product 

of indecomposable factors; and by Lemma 6, these indecomposable factors are 

also 0-groups. Hence, in order to prove Theorem 2, it is enough to show that any 

finite direct product of directly indecomposable 0-groups is a 0-group. 
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Let K = K i t  x ... x K l r  I x K21 x -.. x K2,~ x ... x Kst x ... x Ksr, ,  where 

s, rl,  r2, " ' ,  rs are positive integers, each K~j is a directly indecornposable r 

and Ki~ ~ Ki,i. i f a n d  only if i = i ' ,  for  1 < i ,  i '  < s ,  1 < j < r , ,  1 < j '  < ri.. 

Since Z(K,j)  = 1 for all i, i ,  Z (K)  = 1. Also, as in the p r o o f  of  Lemrna 6, 

A u t K ~  W l x W 2 x " ' x W , ,  

where for i =  1, ..., s,  W~ is the natura l  wreath product  o f A u t  K,I  by ~ , , .As  before, 

let the subgroup  of  W1 • "" x W~ corresponding to  Inn  K be Y1 x ... x Y~, 

where Y~ is the direct p roduc t  o f  r, copies of  Inn  K i l .  Since Aut Kit  splits over  

Inn  K i l ,  L e m m a  5 shows tha t  W~ splits over  Y~. Then by L e m m a  4, W1 x ... x W 

splits over  Yj x ... x Ys. Hence K is a ~ - g r o u p ,  as required. 
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